Factoring Polynomials Day 1

If the area of the following rectangle is 48 in², what are some possibilities for the lenght and width?

$$A = 48 \text{ in}^2$$

Can you use the same concept with an area of 10x + 30?

$$A = 10x + 30 \text{ in}^2$$

Concept Summary Factoring Technique		
Number of Terms	Factoring Technique	General Case
any number	Greatest Common Factor (GCF)	$a^3b^2 + 2a^2b - 4ab^2 = ab(a^2b + 2a - 4b)$
two	Difference of Two Squares Sum of Two Cubes Difference of Two Cubes	$a^{2} - b^{2} = (a + b)(a - b)$ $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ $a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$
three (STAR Method)	Perfect Square Trinomials	$a^{2} + 2ab + b^{2} = (a + b)^{2}$ $a^{2} - 2ab + b^{2} = (a - b)^{2}$
	General Trinomials	$acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$
four or more	Grouping	ax + bx + ay + by = x(a + b) + y(a + b) = $(a + b)(x + y)$

Example 🕕 GCF (Un-distribute)

Example 2 Grouping

Factor $a^3 - 4a^2 + 3a - 12$.

$$a^3-4a^2+3a-12=(a^3-4a^2)+(3a-12)$$
 Group to find a GCF.
 $=a^2(a-4)+3(a-4)$ Factor the GCF of each binomial.
 $=(a-4)(a^2+3)$ Distributive Property

Examples:

1)
$$x^3 + x^2 + 2x + 2$$

2)
$$21 - 7y + 3x - xy$$

Examples:

1)
$$x^2 + 12x + 36$$

2)
$$3x^2 + 11x - 20$$

3)
$$x^2 - 16$$

Always look for GCF 1st!!

4)
$$2x^2 + 2x - 4$$

5)
$$4x^2 + 14x + 6$$

6)
$$3x^3 - 9x^2 - 84x$$

The area of a rectangle is represented by the expression $2x^2 + x - 10$. Find the length and width in terms of x.

Factoring Day 3

Example 4 Binomials

Factor Each polynomial

a.
$$4x^2 - 16$$

$$4(x^2 - 4)$$

$$4(x+2)(x-2)$$

Factor out the GCF.

$$(x^2 - 4)$$
 is the difference of two squares $a^2 - b^2 = (a + b)(a - b)$

- 1) Recognize both terms are perfect squares
- 2) Take the square root of both values
- 3) Fill into the rule for difference of squares

b.
$$y^3 + 27$$

$$(y+3)(y^2-y\cdot 3+3^2)$$

 $2(y-5)(y^2+y\cdot 5+5^2)$

 $2(y - 5)(y^2 + 5y + 25)$

$$(y+3)(y^2-3y+9)$$

Sum of cubes: $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$

- 1) recognize both terms are perfect cubes
- 2)Take the cube root of both values
- 3) Fill into the rule for sum of cubes

c.
$$2y^3 - 250$$

$$2(y^3 - 125)$$

Factor out the GCF.

Difference of cubes:
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

- 1) Recognize both terms are perfect cubes
- 2)Take the cube root of both values
- 3) Fill into the rule for difference of cubes

Factor:

1)
$$16x^2 - 25y^2$$

$$2) a^6 + 64$$

3)
$$z^3 - 1$$

4)
$$4x^5 + 4x^2$$

5)
$$x^4 - y^4$$

6)
$$z^6$$
 - 64