Inverse, and Direct Variations

Direct Variation - "y varies directly as x"

y = kx k is the constant of variation

Х	0	1	2	3	4
у	0	3	6	9	12

$$y = 3x$$

Inverse Variation - "y varies inversely as x"

$$y = \frac{k}{x}$$
 $x = 0$
 $y = \frac{1}{x}$
 $y = -1$
 $y = -1$

$$y = \frac{3}{x}$$

Identify if the following show direct or inverse variations.

Then find the constant of variation (k).

1)
$$xy = 9$$

2)
$$x = \frac{y}{2}$$

3)	X	1	2	3	4	5
	У	-2	-4	-6	-8	-10

4)	а	b
7)	7	4
	6	4.7
	5	5.6
	4	7
	3	9.3

1. If y varies directly as x and y = 12 when x = -3, find y when x = 16.

1st - find the constant using y = kx

2nd - rewrite the equation using the new k

3rd - using the new equation plug in x to find y.

2. The volume V of a gas varies inversely as its pressure P. If the volume is 80 cm³ when the pressure is 2000 mm, find the volume when the pressure is 320 mm of mercury.

1st - find the constant using
$$V = \frac{k}{P}$$

2nd - rewrite the equation using the new k

3rd - using the new equation plug in x to find y.